Wavelet Analysis on the Cantor Dyadic Group
نویسندگان
چکیده
Compactly supported orthogonal wavelets are built on the Cantor dyadic group (the dyadic or a-series local field). Necessary and sufficient conditions are given on a trigonometric polynomial scaling filter for a multiresolution analysis to result. A Lipschitz regularity condition is defined and an unconditional P-convergence result is given for regular wavelet expansions (p > 1). Wavelets are given whose scaling filter is a trigonometric polynomial with 2n many terms; regular wavelets with filters with 8 terms are detailed. These wavelets are identified with certain Walsh series on the real line. A Mallat tree algorithm is given for the wavelets.
منابع مشابه
On Biorthogonal Wavelets Related to the Walsh Functions
In this paper, we describe an algorithm for computing biorthogonal compactly supported dyadic wavelets related to the Walsh functions on the positive half-line R+. It is noted that a similar technique can be applied in very general situations, e.g., in the case of Cantor and Vilenkin groups. Using the feedback-based approach, some numerical experiments comparing orthogonal and biorthogonal dyad...
متن کاملTexture Classification of Diffused Liver Diseases Using Wavelet Transforms
Introduction: A major problem facing the patients with chronic liver diseases is the diagnostic procedure. The conventional diagnostic method depends mainly on needle biopsy which is an invasive method. There are some approaches to develop a reliable noninvasive method of evaluating histological changes in sonograms. The main characteristic used to distinguish between the normal...
متن کاملA New Construction of Wavelet Sets
We show that the class of (dyadic) wavelet sets is in one-to-one correspondence to a special class of Lebesgue measurable isomorphisms of [0, 1) which we call wavelet induced maps. We then define two natural classes of maps WI1 and WI2 which, in order to simplify their construction, retain only part of the characterization properties of a wavelet induced map. We prove that each wavelet induced ...
متن کاملOptimal Quantization for Dyadic Homogeneous Cantor Distributions
For a large class of dyadic homogeneous Cantor distributions in R, which are not necessarily self-similar, we determine the optimal quantizers, give a characterization for the existence of the quantization dimension, and show the non-existence of the quantization coefficient. The class contains all self-similar dyadic Cantor distributions, with contraction factor less than or equal to 1 3 . For...
متن کاملExamples of Wavelets for Local Fields
It is well known that the Haar and Shannon wavelets in L2(R) are at opposite extremes, in the sense that the Haar wavelet is localized in time but not in frequency, whereas the Shannon wavelet is localized in freqency but not in time. We present a rich setting where the Haar and Shannon wavelets coincide and are localized both in time and in frequency. More generally, if R is replaced by a grou...
متن کامل